Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.093
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Physiol Behav ; 277: 114506, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38432442

ABSTRACT

The cannabinoid system plays a key role in stress-related emotional symptoms such as anxiety. Citicoline is a supplemental substance with neuroprotective properties that alleviates anxiety-related behaviors. There is a relation between the actions of cannabinoids and cholinergic systems. So, we decided to evaluate the effects of intracerebroventricular (i.c.v.) infusion of cannabinoid CB1 receptor agents on citicoline-produced response to anxiety-like behaviors in the non-acute restraint stress (NARS) and acute restraint stress (ARS) mice. For i.c.v. microinjection of drugs, a guide cannula was inserted in the left lateral ventricle. ARS was induced by movement restraint for 4 h. Anxiety-related behaviors were assessed using an elevated plus maze (EPM). The results showed that induction of ARS for 4 h decreased the percentage of time spent in the open arms (%OAT) and the percentage of entries to the open arms (%OAE) without affecting locomotor activity, showing anxiogenic-like behaviors. i.c.v. infusion of ACPA (1 µg/mouse) induced an anxiolytic-like effect due to the enhancement of %OAT in the NARS and ARS mice. Nonetheless, i.c.v. microinjection of AM251 (1 µg/mouse) decreased %OAT in the NARS and ARS mice which suggested an anxiogenic-like response. Intraperitoneal (i.p.) administration of citicoline (80 mg/kg) induced an anxiolytic-like effect by the augmentation of %OAT in the ARS mice. Furthermore, when ACPA and citicoline were co-administrated, ACPA potentiated the anxiolytic-like effect induced by citicoline in the NARS and ARS mice. On the other hand, when AM251 and the citicoline were co-injected, AM251 reversed the anxiolytic-like response induced by the citicoline in the NARS and ARS mice. The results of this research exhibited an additive effect between citicoline and ACPA on the induction of anxiolytic-like response in the NARS and ARS mice. Our results indicated an interaction between citicoline and cannabinoid CB1 receptor drugs on the control of anxiety-like behaviors in the NARS and ARS mice.


Subject(s)
Anti-Anxiety Agents , Cannabinoids , Mice , Animals , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Cytidine Diphosphate Choline , Receptor, Cannabinoid, CB1 , Anxiety/etiology , Anxiety/chemically induced , Cannabinoids/pharmacology
2.
Chem Biodivers ; 21(3): e202302122, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38354224

ABSTRACT

Griffinia gardneriana Ravenna, Griffinia liboniana Morren and Griffinia nocturna Ravenna (Amarillydaceae) are bulbous plants found in tropical regions of Brazil. Our work aimed to determine the alkaloid profiles of Griffinia spp. and evaluate their anxiolytic potential through in vivo and in silico assays. The plants grown in greenhouses were dried and their ground bulbs were subjected to liquid-liquid partitions, resulting in alkaloid fractions that were analyzed by gas chromatography coupled to mass spectrometry (GC-MS). Anxiolytic activity was evaluated in zebrafish (Danio rerio) through intraperitoneal injection at doses of 40, 100 and 200 mg/kg in light-dark box test. GC-MS analyses revealed 23 alkaloids belonging to different skeleton types: lycorine, homolychorine, galanthamine, crinine, haemanthamine, montanine and narcisclasine. The chemical profiles were relatively similar, presenting 8 alkaloids common to the three species. The major component for G. gardneriana and G. liboniana was lycorine, while G. nocturna consisted mainly of anhydrolycorine. All three alkaloid fractions demonstrated anxiolytic effect. Furthermore, pre-treatment with diazepam and pizotifen drugs was able to reverse the anxiolytic action, indicating involving the GABAergic and serotonergic receptors. Molecular docking showed that the compounds vittatine, lycorine and 11,12-dehydro-2-methoxyassoanine had high affinity with both receptors, suggesting them to be responsible for the anxiolytic effect.


Subject(s)
Alkaloids , Amaryllidaceae Alkaloids , Amaryllidaceae , Anti-Anxiety Agents , Phenanthridines , Animals , Amaryllidaceae/chemistry , Zebrafish , Anti-Anxiety Agents/pharmacology , Molecular Docking Simulation , Gas Chromatography-Mass Spectrometry/methods , Amaryllidaceae Alkaloids/pharmacology , Amaryllidaceae Alkaloids/chemistry , Alkaloids/pharmacology , Alkaloids/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry
3.
Nutrients ; 16(4)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38398838

ABSTRACT

We have previously identified that low responsiveness to antidepressive therapy is associated with higher aldosterone/cortisol ratio, lower systolic blood pressure, and higher salt preference. Glycyrrhiza glabra (GG) contains glycyrrhizin, an inhibitor of 11ß-hydroxysteroid-dehydrogenase type-2 and antagonist of toll-like receptor 4. The primary hypothesis of this study is that food enrichment with GG extract results in decreased anxiety behavior and reduced salt preference under stress and non-stress conditions. The secondary hypothesis is that the mentioned changes are associated with altered gene expression of barrier proteins in the prefrontal cortex. Male Sprague-Dawley rats were exposed to chronic mild stress for five weeks. Both stressed and unstressed rats were fed a diet with or without an extract of GG roots for the last two weeks. GG induced anxiolytic effects in animals independent of stress exposure, as measured in elevated plus maze test. Salt preference and intake were significantly reduced by GG under control, but not stress conditions. The gene expression of the barrier protein claudin-11 in the prefrontal cortex was increased in control rats exposed to GG, whereas stress-induced rise was prevented. Exposure to GG-enriched diet resulted in reduced ZO-1 expression irrespective of stress conditions. In conclusion, the observed effects of GG are in line with a reduction in the activity of central mineralocorticoid receptors. The treatment with GG extract or its active components may, therefore, be a useful adjunct therapy for patients with subtypes of depression and anxiety disorders with heightened renin-angiotensin-aldosterone system and/or inflammatory activity.


Subject(s)
Anti-Anxiety Agents , Glycyrrhiza , Plant Extracts , Humans , Rats , Male , Animals , Anti-Anxiety Agents/pharmacology , Rats, Sprague-Dawley , Aldosterone , Sodium Chloride, Dietary , Sodium Chloride , Gene Expression
4.
Neurochem Int ; 175: 105706, 2024 May.
Article in English | MEDLINE | ID: mdl-38423391

ABSTRACT

Alcohol use disorder (AUD) is characterized by a set of behavioral, cognitive, nutritional, and physiological phenomena derived from the uncontrolled use of alcoholic beverages. There are cases in which AUD is associated with anxiety disorder, and when untreated, it requires careful pharmacotherapy. Blue Calm® (BC) is a food supplement indicated to aid restorative sleep, which has traces of medicinal plant extracts, as well as myo-inositol, magnesium bisglycinate, taurine, and L-tryptophan as its main chemical constituents. In this context, this study aimed to evaluate the potential of the BC in the treatment alcohol withdrawal-induced anxiety in adult zebrafish (aZF). Initially, BC was submitted to antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl radical. Subsequently, the aZF (n = 6/group) were treated with BC (0.1 or 1 or 10 mg/mL; 20 µL; p.o.), and the sedative effect and acute toxicity (96 h) were evaluated. Then, the anxiolytic-like effect and the possible GABAergic mechanism were analyzed through the Light & Dark Test. Finally, BC action was evaluated for treating alcohol withdrawal-induced anxiety in aZF. Molecular docking was performed to evaluate the interaction of the major chemical constituents of BC with the GABAA receptor. BC showed antioxidant potential, a sedative effect, was not toxic, and all doses of BC had an anxiolytic-like effect and showed potential for the treatment of alcohol withdrawal-induced anxiety in aZF. In addition to the anxiolytic action, the main chemical constituents of BC were confirmed in the molecular docking, thus suggesting that BC is an anxiolytic that modulates the GABAergic system and has pharmacological potential for the treatment of alcohol withdrawal-induced anxiety.


Subject(s)
Alcoholism , Anti-Anxiety Agents , Substance Withdrawal Syndrome , Animals , Zebrafish/physiology , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Anxiety/chemically induced , Anxiety/drug therapy , Anxiety/psychology , Alcoholism/drug therapy , Molecular Docking Simulation , Substance Withdrawal Syndrome/drug therapy , Receptors, GABA-A , Antioxidants/pharmacology , Antioxidants/therapeutic use , Anxiety Disorders/drug therapy , Dietary Supplements , Hypnotics and Sedatives
5.
Eur Rev Med Pharmacol Sci ; 28(3): 1202-1212, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38375725

ABSTRACT

OBJECTIVE: Standard phytochemical investigations were performed to identify the secondary metabolites in the methanol extract of Chaetocarpus castanocarpus bark (MECC) and investigate the neuropharmacological potential of MECC in Swiss albino mice. MATERIALS AND METHODS: Swiss albino mice were used in the forced swimming test (FST) and tail suspension test (TST) to evaluate the antidepressant effect of MECC. Also, the hole board test (HBT) and elevated plus maze (EPM) were conducted to examine anxiolytic activities. In contrast, the open field test (OFT) and hole cross test (HCT) were employed to evaluate sleeping disorders. RESULTS: Alkaloids, glycosides, flavonoids, terpenoids, coumarins, and tannins are only a few secondary metabolites identified in MECC by qualitative and quantitative phytochemical investigations. The oral administration of MECC considerably shortened the immobility duration during FST and TST. Encouraging dose-dependent anxiolytic effects were also observed in all relevant experiments compared to the control. Additionally, during the OFT and HCT assessment, a noteworthy decline in the locomotor activities of the experimental animals was observed. CONCLUSIONS: The results of this investigation suggest that the Chaetocarpus castanocarpus bark is a possible source of therapeutic candidates for treating neurological disorders.


Subject(s)
Anti-Anxiety Agents , Mice , Animals , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Hypnotics and Sedatives/pharmacology , Plant Bark , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Behavior, Animal , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Methanol/pharmacology , Phytochemicals/pharmacology
6.
Behav Brain Res ; 462: 114866, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38232785

ABSTRACT

Perimenopause is a critical period, with severe cycle irregularity and lower estrogen secretion altering redox state biomarkers, leading to behavioral changes. The estrogen hormonal therapy (EHT) being commonly used to alleviate climacteric effects. Therefore, the aim of this study was to analyze anxiolytic profile, recognition memory (short and long term), ambulation, redox status, cell synaptic activity in locus coeruleus and hippocampus of Wistar rats in the periestropause after EHT. Forty rats participated in the study; 20 were treated with corn oil (group 21Mo/Veh; corn oil/0.2 mL/sc; 2x/week) and 20 were submitted to EHT (group 21Mo/E2; 17ß-estradiol/15 µg/Kg/sc; 2x/week) for 120 days. Open field, elevated plus maze, object recognition (RO), and footprint tests were performed immediately before and at the end of the treatment period. From the decapitated brains, isolated hippocampus were destined for biochemical analysis, in turn, perfused brains were destined for histological analysis. The 21Mo/E2 group had a significantly greater total time in the central region and a significantly greater number of entries into the open arms compared to the 21Mo/Veh group, as in crossing, rearing and grooming behaviors, evidencing an anxiolytic profile. In the RO test, the 21Mo/Veh group decreased long-term memory, and the 21Mo/E2 group maintained the same index as at 17 months of age, in addition to a better balance of the hippocampal redox state, prevention of neuronal cell loss and better gait. Based on the results, it appears that exogenous E2 supplementation during periestropause may help preserve neurological functions and potentially prevent neuropsychological and neurodegenerative disorders.


Subject(s)
Anti-Anxiety Agents , Rats , Female , Animals , Humans , Anti-Anxiety Agents/pharmacology , Corn Oil/pharmacology , Rats, Wistar , Estrogens/pharmacology , Estradiol/pharmacology , Cognition , Hippocampus , Ovariectomy
7.
J Ethnopharmacol ; 324: 117774, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38244951

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Caralluma dalzielii (Asclepiadiaceae) is a shrub used in folkloric medicine to treat epilepsy, pain and infertility in sub-Saharan Africa. Previous studies demonstrated its analgesic, antiulcer, anticonvulsant, and anti-inflammatory activities. AIM: This study aimed to determine the neurobehavioural properties of Caralluma dalzielii aqueous aerial parts extract (CDAE) in mice using standard experimental models. MATERIALS AND METHODS: Neurobehavioural activities of CDAE were evaluated (100, 200, and 400 mg/kg) in Swiss Albino mice using the beam walk, staircase, hole board, object recognition, open field assay, Y-maze and forced swimming tests. Phytochemical constituents were analysed using GC-MS. RESULTS: CDAE significantly increased the mean number of head dips, recognition index and spontaneous alternation in hole board (14.03 at 400 mg/kg and 6.01 in distilled water group; p < 0.05), object recognition (68.16% at 400 mg/kg compared with 51.66% of distilled water group) and Y maze (9.16 at 400 mg/kg as against 4.66 of distilled water group; p < 0.05) tests respectively. It decreased the rearing counts as well as the peripheral and central square crossing in the staircase (4.2 at 400 mg/kg as against 7.87 of the distilled water group; p < 0.05) and open field tests (central, 0.81; peripheral, 1.66 at 400 mg/kg as against central, 5.23; peripheral 11.83 of the distilled water control group; p < 0.05), respectively. There were no significant effects on beam walk assays and forced swim tests. The GC-MS analysis identified a hundred compounds in CDAE. Some compounds which have been reported to possess neurobehavioural activity that were identified include 3,5-Dimethylpyrazole, 2-Amino-5-methylbenzoic acid, Acetophenone, and Tetrahydropyran. CONCLUSION: CDAE demonstrated anxiolytic, anti-hyperactivity, and memory-improving effects in mice. The extract may possess GABAergic and glutamatergic properties. More studies are needed to confirm this. Isolation of the bioactive compounds is currently ongoing to unravel the bioactive constituents present in C. dalzielii extract.


Subject(s)
Anti-Anxiety Agents , Apocynaceae , Mice , Animals , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Water , Plant Components, Aerial
8.
Nat Prod Res ; 38(4): 706-709, 2024.
Article in English | MEDLINE | ID: mdl-36929717

ABSTRACT

Recent therapy for managing anxiety disorders is linked with a wide range of adverse effects. The conventional practice of the use of plant extract may indicate an important and new approach to the anxiolytic agent. Seeds of V. radiata belonging to the family Fabaceae is commonly employed to treat several diseases. However, no data is available to screen its viable neuropharmacological effect regardless of its famous use. Hence, the objective of the present study was to isolate the anxiolytic bioactive compound from seeds of V. radiata. Pure bioactive Compounds SU1 and SU2 were obtained from bioactive fraction F9.3 and fraction F9.5 using the bioactivity-guided fractionation method. The current investigation found that 4 mg/kg (o.p.) of kaempferol and γ-aminobutyric acid exhibit significant anxiolytic action in mice that is statistically comparable to diazepam (2 mg/kg.i.p). This study validates the ethnopharmacological use of V. radiata seeds in the management of anxiety disorders.


Subject(s)
Anti-Anxiety Agents , Fabaceae , Vigna , Mice , Animals , Anti-Anxiety Agents/pharmacology , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Seeds
9.
CNS Neurosci Ther ; 30(4): e14520, 2024 04.
Article in English | MEDLINE | ID: mdl-38018559

ABSTRACT

AIMS: Negative emotions induced by chronic pain are a serious clinical problem. Electroacupuncture (EA) is a clinically proven safe and effective method to manage pain-related negative emotions. However, the circuit mechanisms underlying the effect of EA treatment on negative emotions remain unclear. METHODS: Plantar injection of complete Freund's adjuvant (CFA) was performed to establish a rat model of chronic inflammatory pain-induced anxiety-like behaviors. Adeno-associated virus (AAV) tracing was used to identify excitatory synaptic transmission from the rostral anterior cingulate cortex (rACC) to the dorsal raphe nucleus (DRN). Employing chemogenetic approaches, we examined the role of the rACC-DRN circuit in chronic pain-induced anxiety-like behaviors and investigated whether EA could reverse chronic pain-induced dysfunctions of the rACC-DRN circuit and anxiety-like behaviors. RESULTS: We found that chemogenetic activation of the rACC-DRN circuit alleviated CFA-induced anxiety-like behaviors, while chemogenetic inhibition of the rACC-DRN circuit resulted in short-term CFA-induced anxiety-like behaviors. Further research revealed that the development of CFA-induced anxiety-like behaviors was attributed to the dysfunction of rACC CaMKII neurons projecting to DRN serotonergic neurons (rACCCaMKII-DRN5-HT neurons) but not rACC CaMKII neurons projecting to DRN GABAergic neurons (rACCCaMKII-DRNGABA neurons). This is supported by the findings that chemogenetic activation of the rACCCaMKII-DRN5-HT circuit alleviates anxiety-like behaviors in rats with chronic pain, whereas neither chemogenetic inhibition nor chemogenetic activation of the rACCCaMKII-DRNGABA circuit altered CFA chronic pain-evoked anxiety-like behaviors in rats. More importantly, we found that EA could reverse chronic pain-induced changes in the activity of rACC CaMKII neurons and DRN 5-HTergic neurons and that chemogenetic inhibition of the rACCCaMKII-DRN5-HT circuit blocked the therapeutic effects of EA on chronic pain-induced anxiety-like behaviors. CONCLUSIONS: Our data suggest that the reversal of rACCCaMKII-DRN5-HT circuit dysfunction may be a mechanism underlying the therapeutic effect of EA on chronic pain-induced anxiety-like behaviors.


Subject(s)
Anti-Anxiety Agents , Chronic Pain , Electroacupuncture , Rats , Animals , Anti-Anxiety Agents/pharmacology , Chronic Pain/chemically induced , Chronic Pain/therapy , Serotonin , Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Anxiety/drug therapy , Serotonergic Neurons , gamma-Aminobutyric Acid/pharmacology
10.
J Ethnopharmacol ; 321: 117489, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38012973

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Litsea glaucescens K. (Lauraceae) is a small tree from the Mexican and Central American temperate forests, named as "Laurel". Its aromatic leaves are ordinarily consumed as condiments, but also are important in Mexican Traditional Medicine, and among the most important non wood forest products in this area. The leaves are currently used in a decoction for the relief of sadness by the Mazahua ethnic group. Interestingly, "Laurel" has a long history. It was named as "Ehecapahtli" (wind medicine) in pre-Columbian times and applied to heal maladies correlated to the Central Nervous System, among them depression, according to botanical texts written in the American Continent almost five centuries ago. AIM OF THE STUDY: Depression is the first cause of incapacity in the world, and society demands alternative treatments, including aromatherapy. We have previously demonstrated the antidepressant-like activity of L. glaucescens leaves' essential oil (LEO), as well as their monoterpenes linalool, and beta-pinene by intraperitoneal route in a mice behavioral model. Here we now examined if LEO and linalool exhibit this property and anxiolytic activity when administered to mice by inhalation. We also investigated if these effects occur by BDNF pathway activation in the brain. MATERIALS AND METHODS: The LEO was prepared by distillation with water steam and analyzed by gas chromatography-mass spectrometry (GC-MS). The monoterpenes linalool, eucalyptol and ß-pinene were identified and quantified. Antidepressant type properties were determined with the Forced Swim Test (FST) on mice previously exposed to LEO or linalool in an inhalation chamber. The spontaneous locomotor activity and the sedative effect were assessed with the Open Field Test (OFT), and the Exploratory Cylinder (EC), respectively. The anxiolytic properties were investigated with the Elevated Plus Maze Apparatus (EPM) and the Hole Board Test (HBT). All experiments were video documented. The mice were subjected to euthanasia, and the brain hippocampus and prefrontal cortex were dissected. RESULTS: The L. glaucescens essential oil (LEO) contains 31 compounds according to GC/MS, including eucalyptol, linalool and beta-pinene. The LEO has anxiolytic effect by inhalation in mice, as well as linalool, and ß-pinene, as indicated by OFT and EC tests. The LEO and imipramine have antidepressant like activity in mice as revealed by the FST; however, linalool and ketamine treatments didn't modify the time of immobility. The BDNF was increased in FST in mice treated with LEO in both areas of the brain as revealed by Western blot; but did not decrease the level of corticosterone in plasma. The OFT indicated that LEO and imipramine didn't reduce the spontaneous motor activity, while linalool and ketamine caused a significant decrease. CONCLUSION: Here we report by the first time that L. glaucescens leaves essential oil has anxiolytic effect by inhalation in mice, as well as linalool, and ß-pinene. This oil also maintains its antidepressant-like activity by this administration way, similarly to the previously determined intraperitoneally. Since inhalation is a common administration route for humans, our results suggest L. glaucescens essential oil deserve future investigation due to its potential application in aromatherapy.


Subject(s)
Anti-Anxiety Agents , Ketamine , Lauraceae , Litsea , Oils, Volatile , Humans , Mice , Animals , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Oils, Volatile/chemistry , Brain-Derived Neurotrophic Factor , Imipramine/pharmacology , Eucalyptol/pharmacology , Ketamine/pharmacology , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Antidepressive Agents/chemistry , Monoterpenes/pharmacology , Behavior, Animal
11.
J Ethnopharmacol ; 322: 117597, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38128891

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The recent growing concerns about the multisystemic nature of mental health conditions in the global population are facilitating a new paradigm involving alternative natural, nutritional, and complementary therapies. Herbal remedies despite accounts in literature of their ethnobotanical as alternative remedies for diverse ailments, remain underexplored for psychiatric disorders like anxiety, depression, and insomnia. AIM OF THE STUDY: Hence, the anxiolytic, antidepressant, and antioxidant properties of a hydro-ethanolic leaf extract of Parquetina nigrescens (PN) in male Wistar rats were investigated. MATERIALS AND METHODS: The sedative effect was evaluated using the Diazepam sleeping time test while anxiety was induced with a single intraperitoneal injection of 20 mg/kg pentylenetetrazol (PTZ). This was after pre-treatment with 100, 150, and 250 mg/kg of PN or the standard drugs (1 mg/kg diazepam and 30 mg/kg imipramine) for 14 consecutive days. Behavioral tests (Open Field test, Elevated Plus-Maze test, and Forced Swim test) were performed on days 1 and 14, to evaluate the antidepressant and anxiolytic activities of PN. Oxidative stress and neurochemical markers were determined in the brain homogenates of the animals. RESULTS: The duration of sleep was significantly (p < 0.001) increased in the PN-administered group compared to the control. The behavioral models showed that PN exhibited antidepressant and anxiolytic properties in PTZ-induced animals. Significant reductions were observed in GSH level and SOD activity while MDA, nitrite, and GPx levels were significantly increased in PTZ-induced rats. However, treatment with PN significantly improved brain antioxidant status by ameliorating the PTZ-induced oxidative stress. Dopamine, cortisol, and acetylcholine esterase activity levels were significantly (p < 0.05) elevated while serotonin and brain-derived neurotrophic factors were reduced in PTZ-induced rats compared with the control. CONCLUSION: The PN demonstrated neurotransmitter modulatory ability by ameliorating the PTZ-induced neurochemical dysfunction. Findings from this study showed that PN exhibited sedative, antidepressant, and anxiolytic activities in rats.


Subject(s)
Anti-Anxiety Agents , Humans , Rats , Male , Animals , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Rats, Wistar , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Diazepam/pharmacology , Diazepam/therapeutic use , Hypnotics and Sedatives/pharmacology , Behavior, Animal , Depression/drug therapy
12.
J Ethnopharmacol ; 320: 117415, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-37977425

ABSTRACT

ETHNOPHARMACOLOGY RELEVANCE: Central nervous system (CNS) diseases can be diverse and usually present with comorbidity, as in the case of depression and anxiety. Despite alternatives like Psilocybe mushrooms for mental health there is no basic research to evidence their CNS benefits. AIM OF THE STUDY: To evaluate the anxiolytic- and antidepressant-like effects, as well as the acute toxicity of P. cubensis mushroom. MATERIAL AND METHODS: First, the acute toxicity (LD50) of P. cubensis (2000 mg/kg) was determined after the esophageal (p.o.) and intraperitoneal (i.p.) route of administration. The rota-rod test and electroencephalogram (EEG) were included to assess CNS toxicity in free moving mice. Anxiolytic (ambulatory or exploratory and rearing behaviors) and antidepressant behavioral responses were assayed in the open-field, plus-maze, and forced swimming test, respectively, after administration of 1000 mg/kg, p.o., of the whole P. cubensis mushroom or the polar aqueous (AQ) or methanolic (MeOH) extractions (1, 10, and/or 100 mg/kg, i.p.) in comparison to the reference drugs buspirone (4 mg/kg, i.p.), fluoxetine and/or imipramine (10 mg/kg, s.c. and i.p., respectively). A chemical analysis of the AQ and MeOH extractions was performed to detect psilocybin and/or psilocin by using UHPLC. RESULTS: Neurotoxic effects of P. cubensis mushroom administered at high doses were absent in mice assessed in the rota-rod test or for EEG activity. A LD50 > 2000 mg/kg was calculated by p.o. or i.p. administration. While significant and/or dose-response antidepressant-like effects were produced with the whole P. cubensis mushroom, p.o., and after parenteral administration of the AQ or MeOH extractions resembling the effects of the reference drugs. Behavioral responses were associated with an anxiolytic-like effect in the open-field as corroborated in the plus-maze tests. The presence of psilocybin and psilocin was mainly characterized in the AQ extraction. CONCLUSION: Our results provide preclinical evidence of the anxiolytic- and antidepressant-like effects of the P. cubensis mushroom without producing neurotoxicity after enteral or parenteral administration, where psilocybin and psilocin were identified mainly after AQ extraction. This study reinforces the benefits of the P. cubensis mushroom in mental health and therapy for anxiety and depression.


Subject(s)
Agaricales , Anti-Anxiety Agents , Psilocybe , Animals , Mice , Agaricales/chemistry , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/toxicity , Antidepressive Agents/pharmacology , Antidepressive Agents/toxicity , Behavior, Animal , Methanol , Models, Theoretical , Psilocybin/analysis
13.
Pak J Pharm Sci ; 36(6): 1823-1829, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38124423

ABSTRACT

Anxiolytic effect of ethanol, hexane extracts and pure compounds ß- sito sterol glucoside and bergenin isolated from Adenanthera pavonina AP (Fabaceae) and Peltophorum pterocarpum PP (Fabaceae) leaves were monitored in this study. Mice were treated with dose of 125mg/kg body weight of ethanol and hexane leaves extracts of both tested plants while, 5mg/kg body weight of ß-sito sterol glucoside and 25mg/kg body weight of bergenin. The effect was monitored by hole board test, forced swimming test, open field apparatus and stationary rod test. Results from neuropharmacological effects revealed that ethanol extract of AP leaves and hexane extract of PP leaves had significant anxiolytic (forced swimming test) exploratory (head dip and open field test) and neuro activator activity (stationary rod test) at tested dose. The greatest anti-depressant and anxiolytic effect was found in ethanol extract of AP leaves when compared to all treated drugs. A part from memory enhancing effects, diazepam treated mice also exhibited anxiolytic and antidepressant effects and found comparable with ethanol extract of AP. These findings may clarify the impact of ethanol, hexane extracts and pure substances ß-sitosterol glucoside and bergenin at tested concentrations, as well as their potential to treat the Parkinson's and related disorders as an alternative therapy.


Subject(s)
Anti-Anxiety Agents , Fabaceae , Mice , Animals , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Hexanes , Depression/drug therapy , Ethanol/pharmacology , Anxiety/drug therapy , Body Weight , Glucosides/pharmacology , Sterols/pharmacology , Behavior, Animal
14.
Phytother Res ; 37(12): 5897-5903, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37767766

ABSTRACT

Kava is a South Pacific plant-based medicine with anxiolytic properties, but little is known about the impact kava has on gene expression or whether gene expression can serve as a marker of kava response. This study aimed to determine whether kava treatment alters the expression of genes with physiological relevance to anxiety pathophysiology and whether the baseline expression of these physiologically relevant genes modifies the efficacy of kava treatment. In this post hoc analysis, we examined the expression of 48 genes relevant to the pathophysiology of anxiety collected from a double-blind randomized controlled trial that assessed the efficacy of kava treatment in generalized anxiety disorder. Peripheral blood gene expression was measured in 71 (34 kava, 37 placebo) adults at baseline and in 40 (19 kava, 21 placebo) after 8 weeks of treatment by reverse transcription polymerase chain reaction (PCR). Results revealed that kava decreased the expression of a subunit of the GABAA -rho receptor gene (GABRR2) and catechol-O-methyltransferase (COMT), a gene related to catecholamine metabolism. Kava efficacy was not found to be modified by baseline (pretreatment) expression of relevant genes. Although these results did not withstand statistical correction for multiple comparisons and require external validation, they support the notion that kava's mechanism of action includes interaction with GABAergic and catecholaminergic systems.


Subject(s)
Anti-Anxiety Agents , Kava , Humans , Adult , Catechol O-Methyltransferase/genetics , Catechol O-Methyltransferase/therapeutic use , Phytotherapy , Anxiety Disorders/drug therapy , Anxiety Disorders/genetics , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Anxiety/drug therapy , Anxiety/genetics , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Gene Expression
15.
Brain Res Bull ; 203: 110768, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37739234

ABSTRACT

BACKGROUND: Stellaria dichotoma L. var. lanceolata Bge. is renowned for its efficacy in "clearing deficiency heat" and represents a significant traditional Chinese medicine (TCM) resource. Modern pharmacology has demonstrated the anti-anxiety effects of Stellaria dichotoma L. var. lanceolata Bge. polysaccharides (SDPs). SDPs are one of the active constituents of Stellaria dichotoma L. var. lanceolata Bge. This study presents the first extraction of SDPs and investigates their potential molecular mechanisms and anxiolytic effects that are not previously reported. METHODS: First, SDPs were obtained by water extraction and alcohol precipitation and analyzed for their monosaccharide composition by high performance liquid chromatography (HPLC). Male SD rats were subjected to a two-week indeterminate empty bottle stress procedure and a three-day acute restraint stress procedure, during which diazepam (DZP) (1 mg/kg) and SDPs (50, 100 and 200 mg/kg, intragastrically) were administered. A number of behavioral tests, including the elevated plus maze test (EPM), the open field test (OFT) and the light/dark box test (LDB), were used to assess the anti-anxiety potential of SDPs. Serum levels of Corticosterone (CORT) and Adrenocorticotropic hormone (ACTH), as well as the levels of Dopamine (DA) and serotonin (5-HT) found in the hippocampus and frontal cortex, were quantified using commercially available enzyme-linked immunosorbent assay (ELISA) kits. In addition, protein levels of key proteins cAMP-response element binding protein (CREB), phospho-CREB (p-CREB), brain-derived neurotrophic factor (BDNF), ERK½, p-ERK½, and GAPDH expression in rat hippocampus were measured by Western blot analysis, and modulation of the endocannabinoid system was assessed by immunohistochemistry. RESULTS: Following administration of SDPs (50, 100, 200 mg/kg) and diazepam 1 mg/kg, anxiolytic activity was exhibited through an increase in the percentage of arm opening times and arm opening time of rats in the elevated plus maze. Additionally, there was an increase in the number of times and time spent in the open field center, percentage of time spent in the open box, and shuttle times in the LDB. Furthermore, tissue levels of DA and 5-HT were increased in the hippocampus and frontal cortex of rats after treatment with SDPs. In addition, SDPs significantly decreased serum levels of CORT and ACTH in rats. SDPs also effectively regulated the phosphorylation of the extracellular regulated protein kinases (ERK) and CREB-BDNF pathway in the hippocampus. Moreover, the expression levels of CB1 and CB2 proteins were heightened due to SDPs treatment in rats. CONCLUSIONS: The study verified that SDPs alleviate anxiety in the EBS and ARS. The neuroregulatory behavior is accomplished by regulating the Monoamine neurotransmitter, HPA axis, and ECB-ERK-CREB-BDNF signaling pathway.


Subject(s)
Anti-Anxiety Agents , Rats , Male , Animals , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Rats, Sprague-Dawley , Protein Kinases/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Serotonin/metabolism , Hypothalamo-Hypophyseal System/metabolism , Pituitary-Adrenal System/metabolism , Signal Transduction , Hippocampus/metabolism , Dopamine/metabolism , Adrenocorticotropic Hormone , Diazepam/pharmacology , Neurotransmitter Agents/metabolism
16.
Daru ; 31(2): 183-192, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37639147

ABSTRACT

BACKGROUND: Clove volatile oil (CVO) and its major compound, eugenol (EUG), have anxiolytic effects, but their clinical use has been impaired due to their low bioavailability. Thus, their encapsulation in nanosystems can be an alternative to overcome these limitations. OBJECTIVES: This work aims to prepare, characterize and study the anxiolytic potential of CVO loaded-nanoemulsions (CVO-NE) against anxious-like behavior in adult zebrafish (Danio rerio). METHODS: The CVO-NE was prepared using Agaricus blazei Murill polysaccharides as stabilizing agent. The drug-excipient interactions were performed, as well as colloidal characterization of CVO-NE and empty nanoemulsion (B-NE). The acute toxicity and potential anxiolytic activity of CVO, EUG, CVO-NE and B-NE against adult zebrafish models were determined. RESULTS: CVO, EUG, CVO-NE and B-NE presented low acute toxicity, reduced the locomotor activity and anxious-like behavior of the zebrafish at 4 - 20 mg kg-1. CVO-NE reduced the anxious-like behavior of adult zebrafish without affecting their locomotor activity. In addition, it was demonstrated that anxiolytic activity of CVO, EUG and CVO-NE is linked to the involvement of GABAergic pathway. CONCLUSION: Therefore, this study demonstrates the anxiolytic effect of CVO, in addition to providing a new nanoformulation for its administration.


Subject(s)
Anti-Anxiety Agents , Oils, Volatile , Syzygium , Animals , Clove Oil/pharmacology , Clove Oil/metabolism , Oils, Volatile/pharmacology , Zebrafish , Syzygium/metabolism , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/metabolism , Eugenol/pharmacology , Eugenol/metabolism
17.
Brain Res ; 1820: 148554, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37640097

ABSTRACT

Anxiety is a mental disorder characterized by excessive concern about possible future threats that, if prolonged, becomes a pathology that must be controlled through psychotherapy and medication. Currently, the pharmacological treatment for anxiety involves the use of antidepressants and benzodiazepines; however, these treatments often come with adverse effects. Thus, there is a need to seek natural compounds that can help alleviate anxiety and reduce these side effects. On the other hand, pomegranate (PG) fruit is known to have important health benefits, which have been compiled in several reviews. However, its anxiolytic effect has not been thoroughly studied, and clinical research on this topic is lacking. The aim of this work was to conduct a systematic review of studies exploring the anxiolytic-like effect of PG and its phytochemicals. Databases such as Pubmed, ScienceDirect, Springer link, Google scholar, Worldwide science, and Web of science were searched for articles using predetermined terms. Inclusion criteria were established, and original articles that met these criteria were selected. The data collected included information on PG part and variety, species, sample size, anxiety model, dose, route and time of administration, reference drug, main results, and the mechanisms of action. Fifty-nine studies were found that reported the anxiolytic-like effect of PG and its phytochemicals such as anthocyanins, flavonoids, tannins, organic acids, and xanthonoids. The literature suggests that the mechanisms of action behind this effect involved the inhibition of the GABAergic receptor, NMDA, CaMKII/CREB pathway; the reduction of oxidative stress, inhibiting TLR4 and nNOS; modulation of cytokines and the expression of NFkB, GAD67, and iNOS, as well as the activation of Nrf2 and AMPK. PG and some of its phytochemicals could be considered as a novel alternative for the treatment of pathological anxiety. This review is the first to document the anxiolytic-like effect of PG.


Subject(s)
Anti-Anxiety Agents , Lythraceae , Pomegranate , Humans , Pomegranate/chemistry , Fruit/chemistry , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Lythraceae/chemistry , Anthocyanins , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Phytochemicals/analysis
18.
Molecules ; 28(14)2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37513187

ABSTRACT

The negative impact on worldwide social well-being by the increasing rate of psychiatric diseases has led to a continuous new drug search. Even though the current therapeutic options exert their activity on multiple neurological targets, these have various adverse effects, causing treatment abandonment. Recent research has shown that Coriandrum sativum offers a rich source of metabolites, mainly terpenes and flavonoids, as useful agents against central nervous system disorders, with remarkable in vitro and in vivo activities on models related to these pathologies. Furthermore, studies have revealed that some compounds exhibit a chemical interaction with γ-aminobutyric acid, 5-hydroxytryptamine, and N-methyl-D-aspartate receptors, which are key components in the pathophysiology associated with psychiatric and neurological diseases. The current clinical evaluations of standardized extracts of C. sativum are scarce; however, one or more of its compounds represents an area of opportunity to test the efficacy of the plant as an anxiolytic, antidepressant, antiepileptic, or sleep enhancer. For this, the aim of the review was based on the pharmacological activities offered by the compounds identified and isolated from coriander and the processes involved in achieving their effect. In addition, lines of technological research, like molecular docking and nanoparticles, are proposed for the future development of phytomedicines, based on the bioactive molecules of C. sativum, for the treatment of psychiatric and neurological disorders addressed in the present study.


Subject(s)
Anti-Anxiety Agents , Coriandrum , Mental Disorders , Humans , Coriandrum/chemistry , Molecular Docking Simulation , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Antidepressive Agents/metabolism , Mental Disorders/drug therapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/metabolism
19.
Brain Res Bull ; 201: 110712, 2023 09.
Article in English | MEDLINE | ID: mdl-37481143

ABSTRACT

The lateral hypothalamus' orexinergic system has been associated with anxiety-related behaviors, and electroacupuncture (EA) modifies orexin neurons to control the anti-anxiety process. However, in a rat model of post-traumatic stress disorder (PTSD), the important role of LH orexin neurons (OXNs) in the anxiolytic effects induced by EA has not been explored. In this study, rats underwent modified single prolonged stress (MSPS) for seven days before developing EA. The rats were then subjected to elevated plus maze (EPM) and open field (OFT) tests, and western blot and c-Fos/orexin double labeling investigations were carried out to determine the functional activation of LH orexinergic neurons. Compared to MSPS model rats, it has been demonstrated that EA stimulation enhanced the amount of time spent in the central zone (TSCZ) in OFT and the amount of time spent in the open arm (TSOA) in EPM in MSPS model rats (P < 0.01). After behavioral testing, MSPS model rats had decreased activated c-Fos positive OXNs. Still, EA in SPS rats increased that number and elevated orexin type 1 receptors (OXR1) protein expression in the LH. Furthermore, after administering SB334867 (an OXR1 antagonist) to MSPS model rats, the effects of EA therapy on anxiety-like behaviors (ALBs) were significantly diminished. Additionally, when low-dose orexin-A (LORXA) was administered intracerebroventricularly together with EA stimulation in MSPS rats, the anxiolytic effects of the stimulation were substantially enhanced (P < 0.05). The results of this study reveal the mechanisms by which acupuncture may reduce PTSD and advance our understanding of the function of LH orexin signaling in EA's anxiolytic effects.


Subject(s)
Anti-Anxiety Agents , Electroacupuncture , Stress Disorders, Post-Traumatic , Animals , Rats , Stress Disorders, Post-Traumatic/therapy , Anti-Anxiety Agents/pharmacology , Orexins , Hypothalamic Area, Lateral , Neurons
20.
Phytother Res ; 37(9): 4149-4165, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37300355

ABSTRACT

Anxiety disorder is a chronic and disabling psychiatric disorder that is more prevalent in females than in males. 11-Ethoxyviburtinal is an iridoid extracted from Valeriana jatamansi Jones, which has anxiolytic potential. The aim of the present work was to study the anxiolytic efficacy and mechanism of 11-ethoxyviburtinal in gender-specific mice. We first evaluated the anxiolytic-like efficacy of 11-ethoxyviburtinal in chronic restraint stress (CRS) mice of different sexes through behavioral experiments and biochemical indexes. In addition, network pharmacology and molecular docking were used to predict potential targets and important pathways for the treatment of anxiety disorder with 11-ethoxyviburtinal. Finally, the influence of 11-ethoxyviburtinal on phosphoinositide-3-kinase (PI3K)/protein kinase B (Akt) signaling pathway, estrogen receptor ß (ERß) expression, and anxiety-like behavior in mice was verified by western blotting, immunohistochemistry staining, antagonist intervention methods, and behavioral experiments. 11-ethoxyviburtinal alleviated the anxiety-like behaviors induced by CRS and inhibited neurotransmitter dysregulation and HPA axis hyperactivity. It inhibited the abnormal activation of the PI3K/Akt signaling pathway, modulated estrogen production, and promoted ERß expression in mice. In addition, the female mice may be more sensitive to the pharmacological effects of 11-ethoxyviburtinal. 11-ethoxyviburtinal may exert its anxiolytic-like effects through PI3K/Akt and E2/ERß signaling pathways. Meanwhile, by comparing the male and female mice, gender differences may affect the therapy and development of anxiety disorder.


Subject(s)
Anti-Anxiety Agents , Proto-Oncogene Proteins c-akt , Mice , Male , Animals , Female , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Estrogen Receptor beta/metabolism , Anti-Anxiety Agents/pharmacology , Hypothalamo-Hypophyseal System , Molecular Docking Simulation , Pituitary-Adrenal System/metabolism , Signal Transduction , Anxiety/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL